Ing. Daniele Manetti

Calderara di Reno (BO), Via Mazzini 22, cap 40012 Mail d.manetti@studiotecnicolm.it Pec d.manetti@pec.it Cell 347-7404639

consolidamento di sponde fluviali con tecniche di ingegneria naturalistica - pulizia dell'alveo fluviale lungo il torrente conca all'interno del territorio comunale di montecerignone

UNIONE MONTANA MONTEFELTRO

Dott. Geol. Pascucci Fabrizio D.

PROGETTISTA DIRETTORE LAVORI Ing. Daniele Manetti

Tel. 3484037123 C.O.E. 23017 PSCFRZ65H12I459U geologopascucci@libero.it geologopascucci@epap.sicurezzapostale.it

Introduzione

L'area, oggetto di indagine, è situata all'interno del territorio comunale di Montecerignone.

Cartograficamente l'area in studio si rinviene nell'ambito della Carta Tecnica Regionale – Regione Marche, più precisamente nel Foglio n° 267 "San Marino" e più precisamente nelle sezioni n° 267130 "Montecopiolo" e n° 267140 "Macerata Feltria" alla scala 1:10.000.

L'area di studio si estende per circa 700 metri e va da una quota di circa 460 m. a ad una quota di 440 m in direzione Ovest-Est.

Si tratta di un tratto del Torrente Conca interessato da fenomeni di erosione delle sponde in prossimità di due ponti ubicati come nella tavola allegata.

La morfologia, assai variabile, rispecchia la costituzione dei terreni presenti; infatti, a forme appiattite o dolcemente declinate si alternano versanti a forte pendenza e talora forme abrupte e fortemente scoscese.

L'assetto morfologico risulta così determinato quasi esclusivamente dall'azione erosiva generata sui terreni presenti e subordinatamente da fattori tettonici.

In fig. 2 (corografia scala 1 : 25000) è riportata l'area oggetto di indagine.

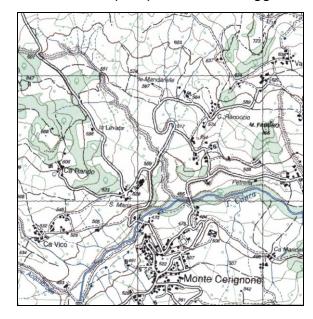
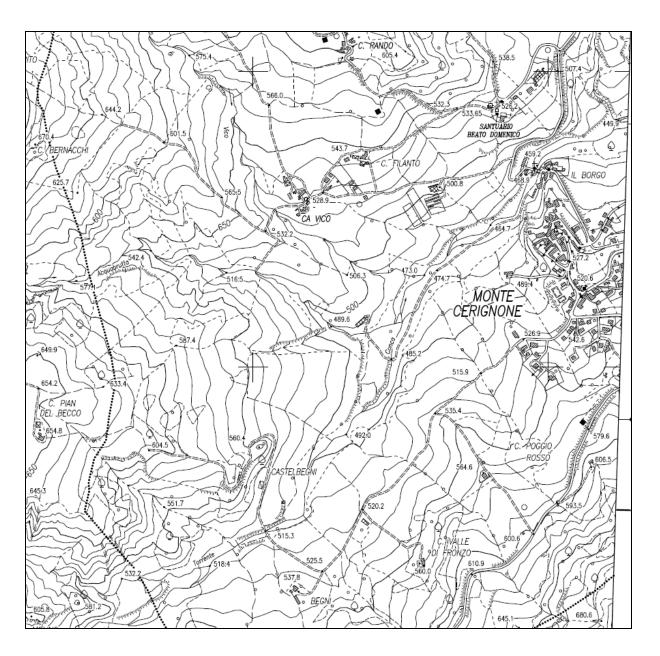



Fig. 2



CARTA TECNICA REGIONALE

Sezione n° 267130 Monte Copiolo

CARTA GEOMORFOLOGICA REGIONALE

> Sezione CTD 267100 MERCATINO CONCA

	LITOLOGIA DEL SUBSTRATO		FORME STRUTTURALI
	Rocce calcaree anidritiche e gessose (GS1)	/\/	Faglie incerte o sepolte
	Rocce marnose marnoso-pelitiche e pelitiche (GS3)	N	Sovrascorrimenti
	Rocce con alternanze di differenti litotipi (GS4)	A	Sovrascorrimenti incerti o sepolti
	Rocce arenitiche (GS5)	\wedge	Faglie
	DEPOSITI QUATERNARI	1	Scarpata 5-25m
00000000000	Alluvioni attuali (ghiaie) bMUS	N	Scarpata > 25m
000000000000000000000000000000000000000	Alluvioni e conoidi terrazzate (ghiaie) bn6MUS		
00000000000	Alluvioni e conoidi terrazzate (ghiale) bn5MAT		FORME GRAVITATIVE
		\wedge	Scarpata di frana di scorrimento (A)
V V V V V	Frana di scorrimento (A)	1	Scarpata di frana di scorrimento (NA)
A A A A A A	Frana di scorrimento (NA)	35	Scarpata di frana per colamento (A)
	Frana di colamento (A)	5	Scarpata di frana per colamento (NA)
300000	Frana di colamento (NA)	XX	Trincea (NA)
100 mg	Depositi eluvio colluviali	1	Orlo di scarpata di degradazione (A)
	Detrito di versante (A)	/2/2	Orlo di scarpata di degradazione (NA)
	Detrito di versante (NA)		FORME DOVUTE ALLE ACQUE CORRENTI SUPERFICIALI
	FORME GRAVITATIVE	1	Alveo in approfondimento
W W W W W	Deformazione gravitativa profonda	N	Solco di ruscellamento concentrato
55555	Area soggetta a soliflusso	M	Vallecola a V (A)
		C	Vallecola a fondo concavo (NA)
	FORME DOVUTE ALLE ACQUE CORRENTI SUPERFICIALI	N	Scarpata di erosione o di terrazzo <5m (A)
	Area a calanchi	/4/	Scarpata di erosione o di terrazzo 5-15m (A)
	Glacis di erosione	/4/	Scarpata di erosione o di terrazzo 5-15m (NA)
77.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	Area a ruscellamento concentrato	~	Scarpata di erosione o di terrazzo >15m (A)
	FORME ANTROPICHE	1	Scarpata di erosione o di terrazzo >15m (NA)
	Area di sbancamento		FORME ANTROPICHE
	Terrapieno	AF	Orlo di scarpata di cava
			Orlo di scarpata antropica (> 2m)
		XX	Tratto di corso daccqua con briglie'
		A .	IDROGRAFIA
		/\/	Corso di acqua perenne

<u>Geologia</u>

Nel territorio amministrativo di Montecerignone la successione mesozoico-terziaria affiorante, è riconducibile a due grandi insiemi litologici, uno riferibile alla Coltre della Val Marecchia e costituita dalle Liguridi e dalla Successione epiligure e uno corrispondente ai depositi "autoctoni" della Successione umbro – marchigiana – romagnola e della Successione post-evaporitica del margine padano - adriatico.

Le unità litostratigrafiche presenti sono suddivise in 4 grandi insiemi corrispondenti a domini paleogeografici:

1. Liguridi

2. Successione epiligure

La storia geologica del territorio Comunale di Mercatino Conca è legata ad un particolare fenomeno geodinamico chiamato **Coltre della Val Marecchia**, che contraddistingue la fascia di Appennino compresa tra i fiumi Savio e Conca.

Dal Cretacico al Pliocene si sono susseguiti alternati fenomeni tettonici, movimenti complessi della crosta terrestre, che hanno determinano lo spostamento di terreni che si sono formati in zone assai diverse dalle attuali. I terreni della Coltre della Val Marecchia per questo motivo sono detti **alloctoni.**

Sono invece detti **autoctoni** i terreni che trovano in posizioni immutate o solo leggermente spostate rispetto a quelle originarie di sedimentazione.

Nel Territorio di Mercatino Conca sono affioranti le unità litostratigrafiche delle Liguridi, e più precisamente la successione stratigrafica che si desume dalla Carta Geologica regionale 1:10.000 Foglio 267 "San Marino" sezione 267100 "Mercatino Conca" è la seguente:

- Sintema del Musone "MUSbn"
- Argille Varicolori "AVR"
- Formazione di Sillano "SIL"
- Formazione di Monte Morello "MLL"

Sintema del Musone (MUSbn)

Sono costituiti sia dai depositi olocenici presenti all'interno del letto di piena

ordinaria dei corsi d'acqua e quindi soggetti a rielaborazione ad ogni evento allu-

vionale, sia dai depositi terrazzati più alti rispetto al thalweg.

I primi costituiscono forme di letto lobate quali barre longitudinali e trasversali i cui

sedimenti sono tipicamente eterometrici, delle dimensioni dalle ghiaie alle argille con

proporzioni variabili di matrice sabbioso-siltosa, localmente con gradazioni sia dirette

sia inverse.

Sedimenti fini, sabbiosi e limosi, caratterizzati da laminazioni pianoparallele e

incrociate e sottili livelli fangosi, vengono depo- sti durante le fasi di calo delle piene

alla sommità delle barre longitudinali o sui fianchi di quelle laterali.

I depositi terrazzati si trovano ad un altezza fino a circa a 5 m sul thalweg.

Localmente il terrazzo alluvionale è sospeso sull'alveo a seguito dei processi di

approfondimento recente del reticolo idrografico che hanno portato all'affioramento

del substrato e possono essere presenti scarpate erosive minori all'interno del

terrazzo che testimoniano i processi di approfondimento olocenici.

I sedimenti sono eterometrici, delle dimensioni dalle ghiaie alle argille, con i clasti

frequentemente immersi in matrice sabbioso-siltosa, localmente con gradazioni sia

dirette sia inverse.

Sono presenti lenti e sottili livelli tabulari di sedimenti sabbiosi e siltosi

caratterizzati da laminazioni pianoparallele e incrociate.

Argille Varicolori della Val Marecchia (AVR)

Sono costituite da argille di colore molto variabile. Il colore predominante è il

grigio, con frequenti variazioni di tonalità, fino al rosso mattone.

L'estesa fratturazione che suddivide le argille in scaglie di dimensioni

Geologo

Pascucci Fabrizio D.

Strada Falunia, 5 Dogana (RSM)

millimetriche o centimetriche, determinandone il caratteristico aspetto, è l'eredità della tormentata storia geologica, così come la presenza di blocchi rocciosi di varie dimensioni e natura (calcari, calcari marnosi, marne e arenarie).

Le Argille Varicolori della Val Marecchia, note anche come Argille scagliose, hanno un'età che va dal Cretacico all'Eocene inferiore e si sono depositate in un mare profondo. Le specie mineralogiche sono numerose ed hanno caratteristiche particolari. La pirite e la marcasite, che hanno stessa composizione chimica ma forma cristallina differente si ritrovano sotto forma di noduli, incrostazioni e cristalli isolati. La calcite si rinviene sotto diverse forme, come le tipiche vene fibrose e le concrezioni discoidali. La barite si trova in noduli fibroso raggiati, grigio verdastro o rossastri e si distingue da altri minerali apparentemente simili per l'elevato peso specifico.

Formazione di Sillano "SIL"

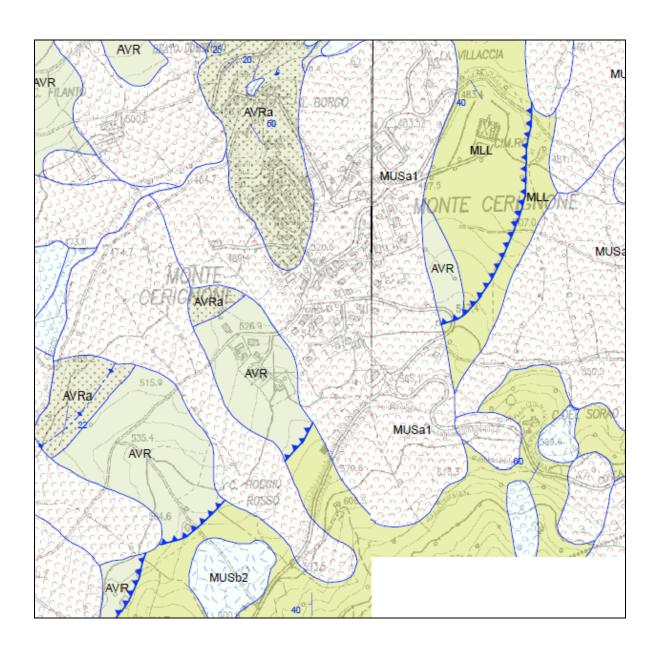
La formazione di Sillano è caratterizzata da una alternanza di strati di spessore da decimetrico a metrico di peliti grigie e calcari grigio-verdastri.

Le peliti possono essere talvolta policrome, specialmente nella parte basale della formazione, dove diventano predominanti rispetto ai calcari.

Localmente sono presenti marne calcaree rosate. La porzione carbonatica è rappresentata da calcareniti torbiditiche a grana fine, calcilutiti in strati da medi a spessi e calcari marnosi con colori che vanno dal grigio al verdastro, ma che spesso possono assumere colore nocciola chiaro.

La parte inferiore della formazione è caratterizzata da un passaggio graduale alle Argille varicolori, con progressivo aumento delle peliti a discapito dei calcari.

Le due formazioni sono inoltre caratterizzate da passaggi di tipo eteropico.


Superiormente passa con un contatto netto alla Formazione di Monte Morello, anche se la parte alta della Formazione di Sillano è comunque contraddistinta da un elevato tenore in strati calcarei.

Formazione di Monte Morello "MLL"

La Formazione di Monte Morello è costituita da una alternanza di calcari e calcari marnosi, calcareniti torbiditiche e marne. I calcari hanno colore grigio chiaro e strati medi o spessi; le calcareniti presentano talvolta una stratificazione fine e bioturbazione. Le marne e marne calcaree hanno una stratificazione sottile e colori che vanno dal nocciola al grigio. Localmente sono presenti livelli di calciruditi a nummuliti. Le intercalazioni politiche sono date da siltiti e argilliti siltose di colore grigio scuro, piuttosto fogliettate. La Formazione di Monte Morello poggia tramite un contatto netto sulla Formazione di Sillano, e localmente direttamente sulle Argille Varicolori, laddove queste sostituiscono lateralmente la formazione precedente.

L'ambiente deposizionale è inquadrabile nell'ambito di un sistema torbiditico carbonatico, in posizione intermedio-distale, come indicano i potenti depositi emipelagici dati da marne.

CARTA GEOLOGICA REGIONALE EDIZIONE CTR

SCALA 1:10.000

LEGENDA GEOLOGICA

DEPOSITI CONTINENTALI QUATERNARI VERSANTE MARCHIGIANO

SINTEMA DEL MUSONE

(OLOCENE)

MUSa1 Frane in evoluzione

MUSa1q Frane senza indizi di evoluzione

MUSb2 Depositi eluvio-colluviali

Depositi alluvionali attuali MUSb (ghiaia, sabbia, limo)

MUSbn

Depositi alluvionali terrazzati (ghiaia, sabbia, limo)

SINTEMA DI MATELICA

(PLEISTOCENE SUPERIORE)

MTIbn

Depositi alluvionali terrazzati (ghiaia, sabbia, limo)

SUCCESSIONE EPILIGURE

FORMAZIONE DI CASA MONTE SABATINO SBTa

litofacies arenacea

Messiniano sup. (?) - Pliocene basale

GES

FORMAZIONE GESSOSO-SOLFIFERA

Messiniano superiore

CGE

ARGILLE DI CASA I GESSI

Messiniano inf.

AQV

FORMAZIONE DI ACQUAVIVA Tortoniano - Messiniano inf.

UNITA' LIGURI

MLL

FORMAZIONE DI MONTE MORELLO Eocene inf. - medio

SIL

FORMAZIONE DI SILLANO Cretacico sup.- Eocene inf.

AVR

ARGILLE VARICOLORI Cretacico inf.- Eocene inf.

AVRa

ARGILLE VARICOLORI litofacies arenacea Cretacico inf.- Eocene inf.

Pascucci Fabrizio D.

Idrogeologia

Lo strato superficiale di Limo argiloso con inclusioni detritiche ha valori di permeabilità piuttosto alti, ciò favorisce l'infiltrazione delle acque meteoriche, che vanno ad alimentare la falda acquifera.

L'idrografia superficiale è caratterizzata dalla presenza di fossi che incidono il versante lungo le linee di maggiore acclività, raccolgono le acque meteoriche e le convogliano nel Fiume Conca.

Il regime idrogeologico di tali corsi d'acqua è generalmente intermittente :portata assente o limitata nella stagione secca, abbondante successivamente a precipitazioni intense e prolungate. Va osservato inoltre come l'alveo dei medesimi corsi d'acqua, qualora essi si trovino ad interessare terreni di diversa natura, presenti una pendenza maggiore in corrispondenza di un substrato litoideo, comunque, maggiormente competente, ed una pendenza più lieve ove tale substrato risulti prevalentemente pelitico. Si sottolinea inoltre come localmente l'andamento dei corsi d'acqua sia condizionato dall'andamento degli assi strutturali principali e dai passaggi litologici dove i fossi di importanza locale vanno ad instaurarsi. La disposizione areale dei corsi minori e maggiori d'acqua dà luogo, nell'insieme, ad un locale "pattern" di drenaggio dendritico/sub parallelo. In base alle suddette considerazioni, la presenza di acqua evidenzia un carattere effimero ed intermittente a seconda dell'alternarsi di periodi siccitosi e piovosi.

piovosità

I dati della piovosità sono estratti dagli annali ideologici dell'ufficio Idrografico e Mareografico di Bologna della Presidenza del Consiglio dei Ministri.

Nella tabella sono indicate le stazioni del Bacino del Fiume Foglia

STAZIONE	ALTEZZA	PRECIPITAZIONE
	S.I.m.	MEDIA mm
CARPEGNA	718	1134,80
LUNANO	306	991,10
MACERATA FELTRIA	321	1099,40
MONTELABBATE	65	929,60
PESARO	11	762,30
PETRIANO	327	959,40
PIEVE DI CAGNA	410	881,60
S.P.IN CERQUETO BONO	367	958,30
SAN SISTO	658	873,20
SASSOCORVARO	331	805,50
SESTINO	495	1092,00
TAVOLETO	426	905,50
VALLE DI TEVA	338	1007,30

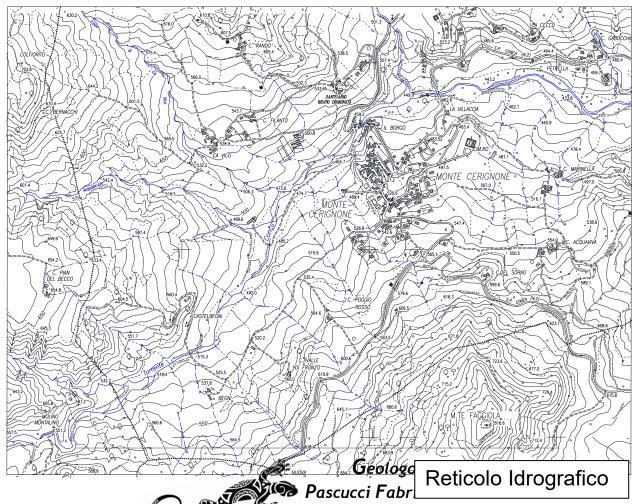
La stazione che più rappresenta la zona in esame per la vicinanza e per la quota s.l.m., è quella di Carpegna, di seguito sono riportati pluviometrici dal 1921 al 1989.

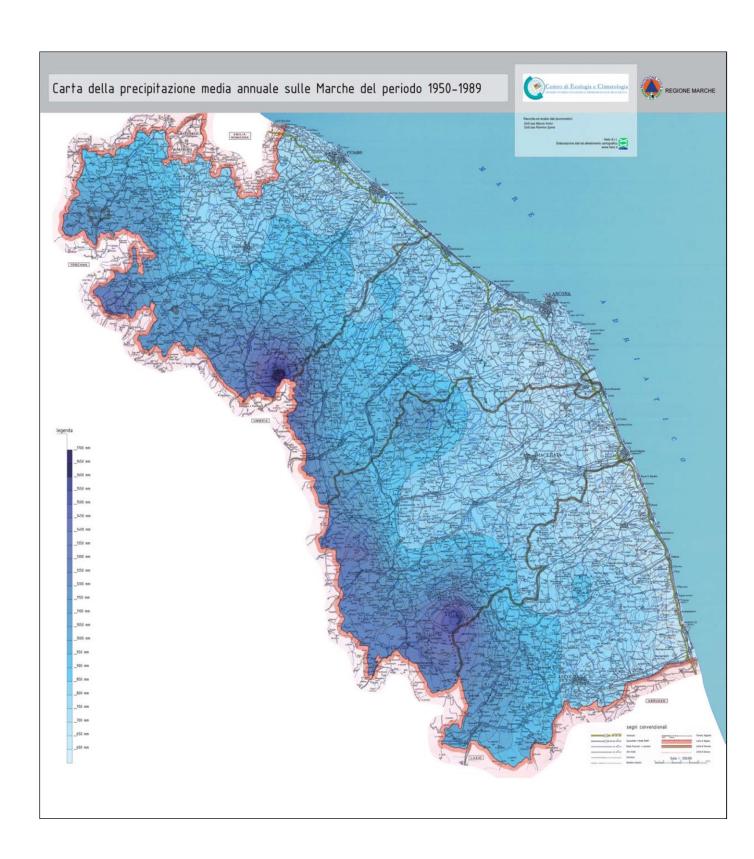
STAZIONE DI CARPEGNA m.s.l.m. 748

Anno	Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno	Luglio	Agosto	Settem .	Ottobre	Novem.	Dicem	Totale
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
1921	50	78	64	182	175	138	26	45	0	53	184	214	1209
1922	106	124	142	151	14	102	11	0	127	281	37	6	1101
1923	20	31	83	225	14	134	45	48	87	0	279	138	1104
1924	43	67	141	16	56	35	20	15	7	52	12	86	550
1925	0	175	110	80	141	36	94	37	331	120	214	40	1378
1926	102	61	47	165	131	12	55	40	84	146	410	207	1460
1927	72	21	126	53	63	29	0	14	14	43	74	115	624
1928	-	-	-		-	-	-	-	-	-	-	-	-
1929	-	-	-		-	-	-	-	-	-	-	-	-
1930	38	94	49	94	161	59	105	88	123	115	82	106	1114
1931	55	49	90	30	70	11	19	20	156	123	106	37	766
1932	97	40	63	71	116	91	141	31	49	122	44	91	956
1933	75	115	34	101	176	141	86	4	131	218	236	105	1422
1934	66	102	144	77	56	118	68	50	86	137	155	107	1166
1935	92	88	23	50	38	17	50	89	14	103	126	85	775
1936	94	95	65	144	20	98	29	21	141	210	53	45	1015
1937	77	60	225	196	53	94	110	143	202	149	156	260	1725
1938	49	23	36	96	139	12	55	123	37	80	79	109	838
1939	108	6	99	126	422	153	7	32	177	97	81	163	1471
1940	129	79	17	132	106	189	45	91	31	281	151	84	1335
1941	100	222	42	101	137	65	89	19	135	104	220	70	1304
1942	55	184	74	86	36	51	130	22	140	34	177	125	1114
1943	51	100	82	20	88	25	4	0	161	250	166	95	1042
1944	-	-	-	-	-	-		-	-	-	-	-	-
1945	-		-	-		-	-	-		-		-	-
1946	-	-	-	- 1	1	- 1	1	-	- 1	- 1	- 1	-	-
1947	129	190	107	50	48	41	6	71	146	103	84	117	1092
1948	200	80	0	115	112	37	43	31	135	177	78	25	1033
1949	54	13	64	15	110	118	12	72	70	147	239	60	974
1950	88	71	93	158	43	58	46	61	112	113	97	152	1092
1951	231	176.8	202	92.4	102.2	39	161	10.2	143.6	245.8	174.4	92.6	1671

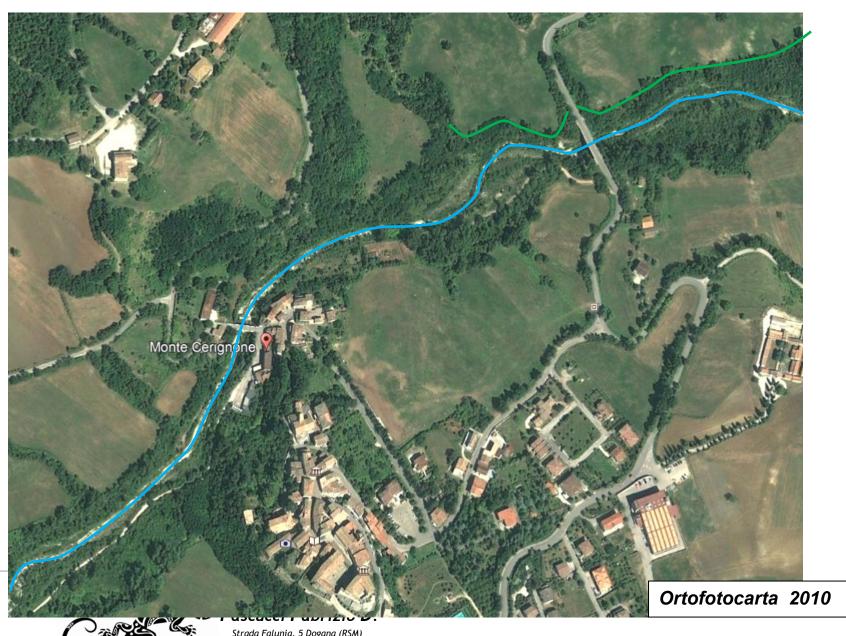
1 1	1	1	İ	i i	1	I	Ī	İ	1	ı	1	I	1 1
1952	102	82.6	10	77.2	51.8	30	68.6	55	82.2	55.6	123.6	208.4	947
1953	91.4	100.4	24.8	116.8	129	90.2	13	97.2	69.8	168.2	23.2	68.2	992.2
1954	103.8	66.4	105	74.8	269.8	62.4	120.6	45.2	26.4	92.4	109.6	47	1123.4
1955	59.2	208	137.2	64.8	38.4	89.8	72.8	58	204.8	206.4	125.2	91.4	1356
1956	82.8	118.4	140.4	160.8	62.6	145.6	75	7.8	25.6	77	240	37	1173
1957	137.2	117.8	57.6	172.2	151.2	14	47	41.4	54.4	78.6	33.8	69.6	974.8
1958	76.4	38.4	188.8	229.6	53.4	69.4	26.6	34.8	30	102.6	211	155.4	1216.4
1959	124.6	45.2	104.4	132.8	89	106.2	69.6	242.4	75.2	87.6	113.4	354.8	1545.2
1960	101.4	127.2	178	120	54	45	104.2	23.4	197.2	168.4	104.6	177.4	1400.8
1961	103.6	20.2	29.4	127	92	43.2	82.4	7.8	57.6	190.8	220	275.2	1249.2
1962	178.6	85.6	202	85	41	76.4	8	5.8	52.2	126.2	215.2	85	1161
1963	242.8	108.6	90.4	91.6	156.2	80.4	63.4	57.2	118.2	196.8	106.8	123.6	1436
1964	8.4	26.2	235.8	64.6	45	52.4	59.6	66.8	98	214.8	97.4	214.8	1183.8
1965	90	72	106	163.6	151	105	7.2	69.4	196.6	6.2	194.4	105	1266.4
1966	76	47.6	51	50.6	70	28.2	66.6	33	151.6	118.2	155.4	116	964.2
1967	94.8	38.2	17.6	117.4	57	80	37.4	62.4	52.6	11.4	138	153.2	860
1968	111.6	107.6	33.4	72.8	159.8	126.8	102	125.4	66.6	57	142	196.8	1301.8
1969	73.6	228.2	122	102.6	56.6	97.2	98.4	115.8	135	9	161.2	107.6	1307.2
1970	94.4	107.4	112.6	53.6	59.8	65.2	25.2	45.8	16	39	87.6	218.8	925.4
1971	160.2	45.4	95.4	49.2	73.6	102.8	75.8	6.2	137.4	34.6	154.8	21	956.4
1972	136.8	131	79.4	190.4	85.8	47.2	103.8	214.6	134.8	45.6	82.6	72.2	1324.2
1973	151	96	99.2	121.4	12.4	55.6	40.8	61.4	229.4	45.8	96.6	52.4	1062
1974	36.6	66.6	73.8	124.2	126.4	45.2	45.4	81.2	52	128.8	128.6	51.8	960.6
1975	20.4	60.4	97.6	72	100.4	73.2	41	233.6	42.4	95	136.8	85	1057.8
1976	37	168.4	103.4	50.8	40.2	148.4	85	200.8	89.2	121.2	156.2	141.4	1342
1977	56.2	97.6	83.2	36.2	77	44.2	104.8	60.4	81.2	58	168.4	57.8	925
1978	79.6	72	134.4	218.8	74.2	92.4	55.6	74.6	88.2	147	79	139.2	1255
1979	184.8	125.2	83.4	157.2	4.2	110.2	63.2	60.2	52.6	82	312.4	127.4	1362.8
1980	131.2	29.6	156.6	105.6	175.2	64.6	17.6	37.8	44.4	170.8	241.4	147.6	1322.4
1981	41	45.2	62.8	43.2	64	178.2	35.8	54	156.4	55.2	19	219.6	974.4
1982	66.2	67	184.2	87	131.6	58.6	94.2	156.8	57.2	185.4	127.4	232.4	1448
1983	27.8	109.6	129	80.8	24	43.2	41	60.4	26.8	67	24.8	117.6	752
1984	73.2	114.4	141	144	145.4	62	16.2	72.6	175.2	99.8	86.4	85.6	1215.8
1985	111	48	132.4	51	93.6	23.6	20	45.2	9.4	144.2	132.6	92	903
1986	80	120	132.8	97.4	71	140.8	121.4	19.6	88.2	70.2	94.4	58	1093.8
1987	138.8	83.4	79	47.8	187.2	27.6	22	73.4	90.4	146.4	181.6	98.6	1176.2
1988 1989	59 12.8	66.2 47.2	75.8 54.4	67.8 114.2	75.4 58.2	94.6 106.8	1.2 142	26.8 127.4	74 234.4	50 50.6	83.8 122.2	18.6 17.6	693.2 1087.8
				102.6	94.3								
Media	89.6	88.8	96.3	102.6	94.3	75.5	58.3	63.1	100.2	114.2	136.7	115.2	1134.8

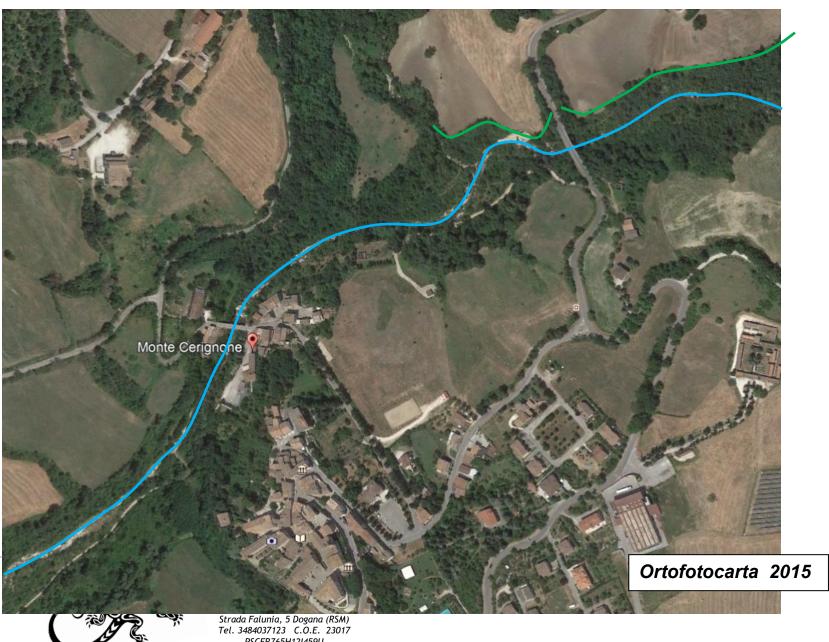
Di seguito sono riportati in tabella le precipitazioni di massima intensità con diversa durata in ore, registrate dalla stazione pluviometrica d Carpegna dal 1951 al 1980 e ricavate dagli Anali Ideologici pubblicati dall'Ufficio Idrografico e Mareografico di Bologna.

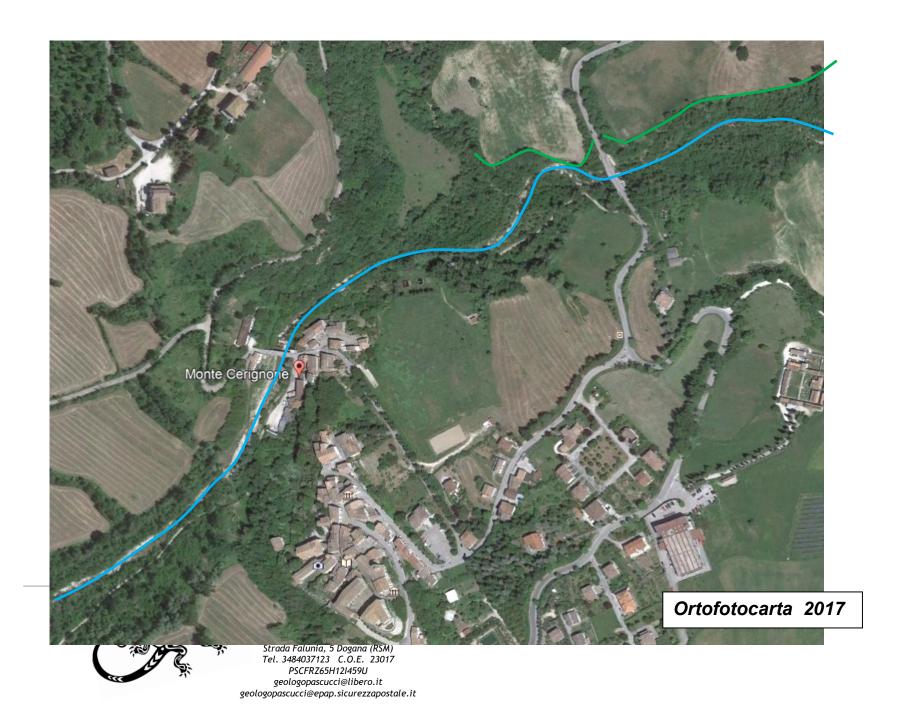

anno	1 ora	3 ore	6 ore	12 ore	24 ore
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	36.2 32.4 17.0 23.2 19.0 39.8 18.4 16.6 39.0 21.8 28.0 25.0 43.4 19.0 23.0 14.6 25.6 37.2 18.0 69.0 32.2 24.0	46.2 46.2 23.2 28.8 39.6 41.2 18.4 22.0 44.8 27.8 42.4 34.0 45.6 48.8 21.6 38.0 21.6 33.2 21.6 70.0 40.2 29.2	56.6 50.8 36.6 32.0 57.8 41.2 28.0 32.2 60.0 37.0 55.0 44.0 55.8 35.0 52.6 47.0 37.2 31.4 85.4 44.2 40.6 	68.0 50.8 49.4 55.2 80.6 59.2 38.8 61.8 45.2 81.6 44.0 61.2 60.8 45.4 86.0 45.4 87.0 54.0 54.0 55.8 66.0 74.6	82.8 50.8 53.0 68.4 88.0 79.6 45.8 62.8 65.0 63.0 103.2 70.0 84.8 65.6 69.2 110.6 57.2 102.8 70.0 60.0 103.8 65.4 83.2


Altegga delle precipitazioni di forte intensita' e breve durata registrate nella staz. pluviometrica di CARPEGNA a quota 748 ml. s.l.m.

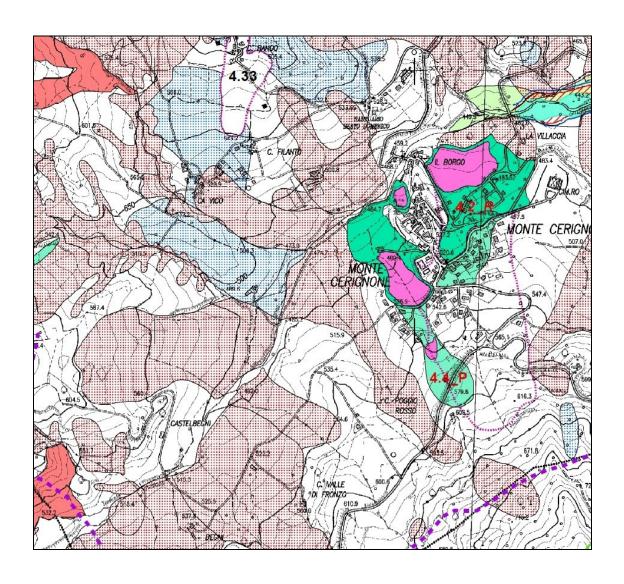
PSCFRZ65H12I459U geologopascucci@libero.it geologopascucci@epap.sicurezzapostale.it







Pascucci Fabrizio D.



<u>Limiti PAI</u>

Per quanto riguarda l'inquadramento dell'area in studio rispetto alle previsioni e normative del **P.A.I.** (Piano stralcio per l'assetto idrogeologico) redatto dall'Autorità di Bacino della Regione Marche, dopo aver valutato la tavola del Comune di Montecerignone si è riscontrato che la zona su cui ricade l'area oggetto di studio risulta all'interno di un area ad alta vulnerabilità idrologica.

Legenda Confini comunali Alveo (art. 8) Fascia con probabilità di inondazione corrispondente a piene con tempi di ritorno fino a 200 anni nella situazione pre-interventi (art. 9) Fascia con probabilità di inondazione corrispondente a piene con tempi di ritorno fino a 200 anni nella situazione post-interventi (art. 9) Fasce ad Alta Vulnerabiltà Idrologica (art. 9) Delimitazione della fascia di territorio con probabilità di inondazione corrispondente a piene con tempi di ritorno fino a 500 anni (art. 10) Attraversamenti non adeguati Numero progressivo Corso d'acqua IGMA R3 Livello di rischio (nel caso di ponti T5 o T2 a seconda della criticità a 50 o 200 anni) Calanchi (art. 14) Aree in dissesto per fenomeni in atto (art. 14) Aree di possibile influenza del dissesto nelle frane di crollo (art. 15) Aree di possibile evoluzione del dissesto e frane quiescenti (art. 16) NN_R Codice identificativo di area a rischio elevato e/o molto elevato (Perimetrazione di cui all'Allegato 2A) NN p Codice identificativo di area a pericolosità elevata e/o molto elevata (Perimetrazione di cui all'Allegato 2B) Aree in dissesto da assoggettare a verifica (art. 17) Attiva Quiescente Aree verificate (ex art. 17) Frana non cartografabile attiva Frana non cartografabile quiescente

<u>Portata di Progetto</u>

CALCOLO DELLA PORTATA DI PROGETTO (Q200_S, Q30_S)

Canale Consorziale:

Si adotta il metodo razionale introdotto da Turazza:

$$Q = k \cdot C \cdot i_c \cdot A$$

ove:

k = fattore di correzione delle unità di misura = 0,278

C= coefficiente di afflusso

i_e= intensità della pioggia di progetto (mm/h)

A = Superficie del bacino (kmq)

Stima del coefficiente di afflusso (C)

Dall'analisi della tavola di G. Benini ("Sistemazioni idraulico forestali" - 1990)

			Tipo di suolo		
		Terreno leggero	Terreno di	Terreno	
Vegetazione e pendenza			medio impasto	compatto	
Boschi	< 10 %	0,13	0,18	0,25	
	> 10 %	0,16	0,21	0,36	
Pascoli	< 10 %	0,16	0,16	0,22	
	> 10 %	0,22	0,42	0,62	
Colture agrarie	< 10 %	0,40	0,60	0,70	
	> 10 %	0,52	0,72	0,82	

Si assume C= 0.50 (valori minimi: 0,5 pianura - 0,8 collina)

Calcolo del tempo di corrivazione

Per i bacini di montagna si adotta la formula di Pezzoli (1970):

$$t_c = 0,055 \, \frac{L}{i^{0.5}}$$
 ove: t_c= tempo di corrivazione (ore)
L= lunghezza dell'asta principale estesa fino allo spartiacque (Km) i= pendenza media dell'asta principale

Per i canali di pianura si adotta la formula di Pasini

$$t_{c} = \frac{0.108 \cdot \sqrt[3]{A_{tot}L}}{\sqrt{i}_{tot}}$$
 t_{e} = tempo di corrivazione (ore)

L= lunghezza dell'asta principale estesa allo spartiacque (Km)

 A_{tot} = estensione bacino idrografico (Kmq)

 i_{tot} = pendenza media dell'intera asta principale (m/m)

Tipologia bacino (m/p): $\begin{array}{lll} \text{m} \\ \text{A}_{\text{tot}} = & 144.00 \text{ kmq} \\ \text{L} = & 40.00 \text{ Km} \\ \text{i}_{\text{tot}} = & 0.02000 \text{ m/m} \\ \end{array}$

t_c = 15.56 ore

geologopascucci@epap.sicurezzapostale.it

Stima dell'intensità di precipitazione critica (ic)

Si considerano le leggi di possibilità climatica costruite a partire dall'analisi statistica regionale del PAI - stralcio dell'Autorità dei bacini regionali romagnoli (2001) Le leggi sono esspresse nella consueta forma:

$$h(TR) = a(TR) \cdot d^{n(T)} \qquad i(TR) = h(TR) / d$$

ove:

h = altezza di precipitazione (mm)

i = intensità di precipitazione (mm/h)

d = durata della precipitazione (ore)

a - n = parametri desunti dall'interpolazione dei valori sperimentali

TR = tempo di ritorno

Per fissati valori del tempo di ritorno si è ottenuto:

T=30 anni	$h = 50 d^{0.30}$	Autorità di bacino
T=100 anni	$h = 69,00 d^{0.27}$	Autorità di bacino
T=200 anni	h = 75,00 d ^{0,29}	Autorità di bacino

Si assume che la precipitazione critica sia quella con durata pari al tempo di corrivazione. Ponendo d = tc nelle leggi precedenti, si ottengono i seguenti valori dell' altezza critica hc e della intensità critica ic:

TR=30 anni	hc=	113.90 mm	ic=	7.32 mm/h
TR=100 anni	hc=	144.77 mm	ic=	9.31 mm/h
TR=200 anni	hc=	166.23 mm	ic=	10.69 mm/h

Calcolo della portata di progetto alla sezione terminale dello scolo

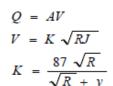
$$Q = k \cdot C \cdot i_c \cdot A_{tot}$$

Q _{30, TOT} =	146.56 m³/sec	q ₃₀ =	1.0178 m ³ /sec/Km ²
Q _{100, TOT} =	186.27 m³/sec	q ₁₀₀ =	1.2935 m ³ /sec/Km ²
Q _{200, TOT} =	213.89 m ³ /sec	q ₂₀₀ =	1.4853 m ³ /sec/Km ²

Calcolo della portata di progetto alla sezione da verificare

$A_{s} = 40.00 \text{ Km}^{2}$	Area bacino chiuso alla sezione da verificare
--------------------------------	---

Q _{30, S} =	40.71 m³/sec
Q _{200, S} =	59.41 m³/sec



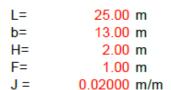
CALCOLO DELLA OFFICIOSITA' ALLA SEZIONE S (Qs)

Canale Consorziale:

Condizioni approssimate di moto uniforme

Formula di Bazin II

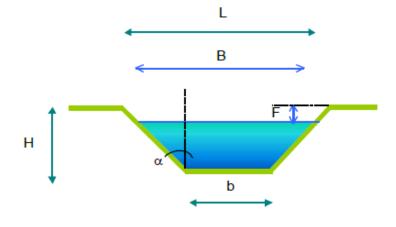
A = Area sezione utile


R = raggio idraulico = A/C

C = Contorno bagnato

J = Pendenza

γ = coefficiente di scabrezza


F = franco di sicurezza o di bonifica

A = 16.00 mq C = 19.32 m

R = 0.83 m

Canali in terra in cattive condizioni con ampia vegetazione e depositi di ghiaia e massi sul fondo

K = 29.76

V = 3.83 m/sec

 $Q_s = 61.28 \text{ mc/sec}$

✓ Atot > 1 kmq

Q_{30, S} = 40.71 mc/sec sezione verificata a Q30
Q_{200, S} = 59.41 mc/sec sezione verificata a Q200

PSCFRZ65H12I459U geologopascucci@libero.it geologopascucci@epap.sicurezzapostale.it

Pascucci Fabrizio D.

CONDIZIONE SISMICA

Sismicità storica:

La sismicità storica del Comune di Montecerignone è stata desunta dal Database Macrosismico Italiano DBMI11 (M. Locati, R. Camassi e M. Stucchi (a cura di), 2011. DBMI11, la versione 2011 del Database Macrosismico Italiano. Milano, Bologna, http://emidius.mi.ingv.it/DBMI11) utilizzato per la compilazione del catalogo parametrico il Catalogo Parametrico dei terremoti italiani CPTI11 (A. Rovida, R. Camassi, P. Gasperini e M. Stucchi (a cura di), 2011. CPTI11, la versione 2011 del Catalogo Parametrico dei Terremoti Italiani. Milano, Bologna, http://emidius.mi.ingv.it/CPTI).

La sismicità del territorio comunale è riassunta nella seguente dove sono elencate le osservazioni, aventi la maggiore intensità al sito, disponibili per il territorio comunale. Nella tabella sono indicate:

l'intensità al sito (I); la data; l'intensità massima epicentrale in scala MCS (Io); la magnitudo momento (Mw).

Come si può vedere dalla storia sismica riportata, il sito è stato interessato da n. 13 eventi sismici con intensità che hanno raggiunto il 6° grado della Scala MCS e con magnitudo momento (Mw) comprese tra 4,22±0,09 e 6,01±0,09.

Storia sismica di Monte Cerignone [43.840, 12.413]

Numero di eventi: 3

Effetti	In occasione del terremoto del:					
I[MCS]	Data	Ax	Nр	Io Mw		
4	1948 06 13 06:33	Valtiberina	142	7 5.05 ±0.14		
NF	1971 10 04 16:43	NORCIA	43	4.99 ±0.16		
4	1987 07 05 13:12	VALMARECCHIA	90	6 4.47 ±0.09		

Zonizzazione sismica nazionale e regionale

Negli ultimi anni il punto di riferimento per le valutazioni di pericolosità sismica è stato rappresentato dalla zonazione sismogenetica ZS9 (Scandone et al. 1996 - 2000) che rappresenta la traduzione operativa del modello sismotettonico riassunto in Meletti et al. (2000).

In seguito all'emanazione dell'O.P.C.M. 20.3.2003, n. 3274 è stato redatto a cura di un gruppo di lavoro dell'INGV un documento denominato "Redazione della mappa di pericolosità sismica prevista dall'O.P.C.M. 20-3-2003, n.3274 (Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici").

Tale modello riprende sostanzialmente il background informativo della precedente zonazione, recependo i più recenti avanzamenti delle conoscenze sulla tettonica attiva della penisola anche considerando le indicazioni derivanti da episodi sismici più recenti (es. Bormio 2000, Monferrato 2001, ecc...).

La zonizzazione è stata condotta tramite l'analisi cinematica degli elementi geologici, cenozoici e quaternari coinvolti nella dinamica delle strutture litosferiche profonde e della crosta superficiale.

Il confronto tra le informazioni che hanno condotto alla costruzione del modello geodinamico e la sismicità osservata ha permesso di costruire la carta nazionale delle zone sismogenetiche.

Per il reperimento dei dati relativi alla sismicità osservata è stato considerato il catalogo storico contenente 2.488 eventi degli ultimi 1.000 anni con intensità epicentrali maggiore o uguale al V – VI grado MCS la cui magnitudo è maggiore o uguale a 4.

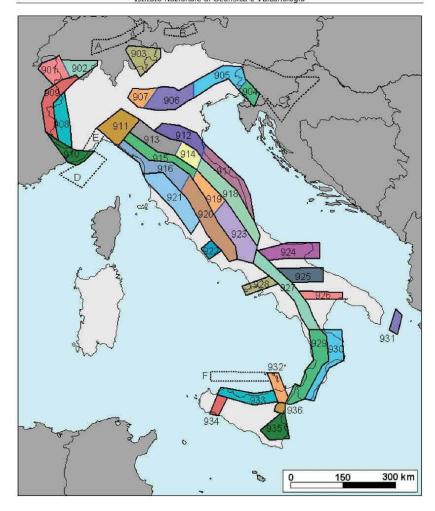


Figura 12 Zonizzazione sismogenetica ZS9

La zona che interessa l'area in esame è la 917, che fa parte del complesso "Appennino settentrionale e centrale" (zone che vanno dalla 911 alla 923). Questa zona ricade nella porzione più esterna della fascia di compressione dell'arco appenninico settentrionale. Ogni zonizzazione sismogenetica è caratterizzata da un definito modello cinematico il quale sfrutta una serie di relazioni di attenuazione stimate sulla base di misurazioni accelerometriche effettuate sia sul territorio nazionale che europeo. Sulla base di tali zone, per tutto il territorio italiano, sono state sviluppate le carte della pericolosità sismica. Nella Zona Sismogenetica 917 sono previsti, sulla base dei meccanismi

focali, valori di massima magnitudo pari a Mwmax = 6,14.

Il risultato, per ogni comune, è rappresentato da una stima del rischio sismico che tiene conto dell'intera storia sismica riportata nel catalogo sismico nazionale e che viene espresso in termini probabilistici. La pericolosità sismica di riferimento ipotizza un substrato omogeneo in roccia ed è espressa in PGA (Peak Ground Acceleration) con associato un periodo di ritorno di 475 anni, valore convenzionale in quanto rappresenta l'accelerazione associata alla probabilità del 90% di non superamento considerando un periodo di ritorno di 50 anni (vedi carta INGV nella pagina eguente). Il territorio italiano è stato suddiviso in quattro zone (o categorie) contraddistinte da differenti valori di PGA (tabella III)

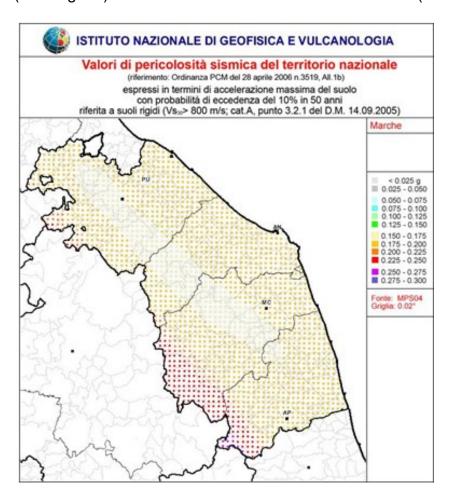


Figura 13 Carta di pericolosità sismica del territorio regionale espresse in accelerazione orizzontale di picco PGA con periodo di ritorno di 475 anni (pari alla probabilità di non eccedenza del 90% in

50 anni) Le aree a diverso PGA sono differenziate in base a colorazioni diverse

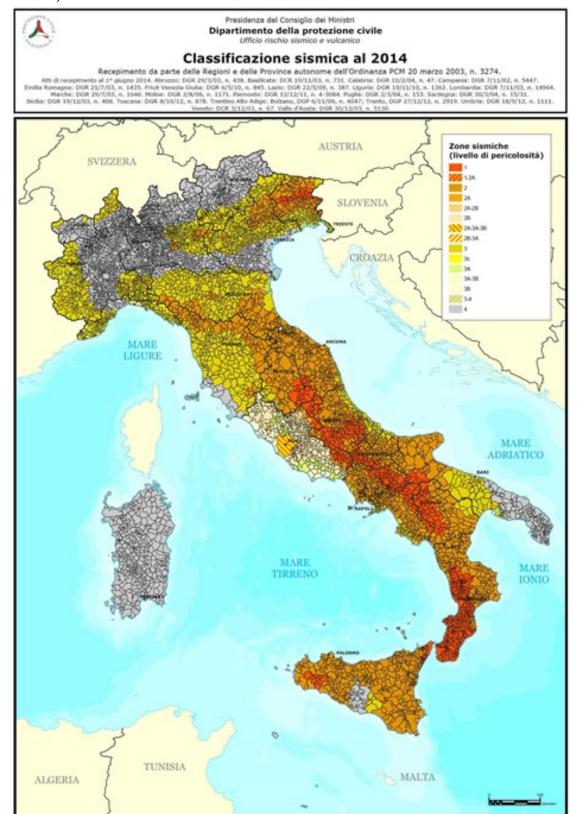


Figura 14 Classificazione sismica vigente del territorio nazionale

Con riferimento alla classificazione sismica nell'Ordinanza del Consiglio dei Ministri n. 3274/2003 e le norme tecniche vigenti, che disciplinano le costruzioni in zone sismiche, il territorio comunale di Montecerignone, è classificato come zona 2 con livello di pericolosità sismico medio con valori massimi di PGA pari a 0,25g.

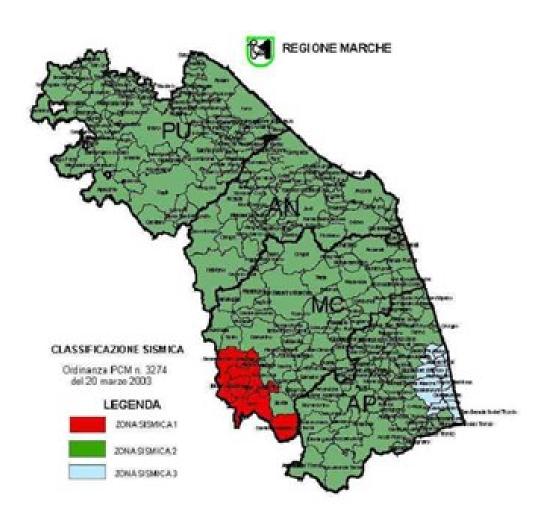


Figura 15 Classificazione sismica vigente dei Comuni della Regione Marche

CATEGORIE TOPOGRAFICHE (condizioni topografiche)

Per configurazioni superficiali semplici, si può adottare la seguente tab. 3.2.IV riportata nelle NTC, evidenziando che le categorie riportate si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate se di altezza maggiore di 30 mt.

Tabella 3.2.IV - Categorie topografiche

Categoria	Caratteristiche della superficie topografica	
Tl	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°	
T2	Pendii con inclinazione media i > 15°	
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30	
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°	

Il valore del coefficiente topografico ST è riportato nella sottostante Tabella e la sua variazione spaziale è definita da un decremento lineare con l'altezza del pendio o rilievo, dalla sommità fino alla base dove ST assume valore unitario.

Tabella 3.2.VI - Valori massimi del coefficiente di amplificazione topografica ST

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_T
T1		1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Nel nostro caso, visto che ci troviamo in condizioni di morfologia con inclinazione media inferiore ai 15°, si assume T1 come categoria topografica con ST = 1

